
a.
:>
D

ESD-TR-72-157

ESD ACCESSION LIST
DRI Call No ~\^^SCp

Copy No. \ cf JL cvs.

CURRENT TRENDS IN DATA MANAGEMENT
SYSTEM ARCHITECTURE

J. A. Singer

MTR-2303

MARCH 1973

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

^

C^o^
^

S>
^>*>*> ,)

<
> P &

& tf>°

Approved for public release;
distribution unlimited.

Project 572M
Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract F19 628 -71-C-0002

Af)ll\QQ6

When U.S. Government drawings, specifications,

or other data are used for any purpose other than

a definitely related government procurement

operation, the government thereby incurs no re-

sponsibility nor any obligation whatsoever; and

the fact that the government may have formu-

lated, furnished, or In any way supplied the said

drawings, specifications, or other data is not to be

regarded by implication or otherwise, as in any

manner licensing the holder or any other person

or corporation, or conveying any rights or per-

mission to manufacture, use, or sell any patented

invention that may in any way be related thereto.

Do not return this copy. Retain or destrnv

ESD-TR-72-157 MTR-2303

CURRENT TRENDS IN DATA MANAGEMENT
SYSTEM ARCHITECTURE

J. A. Singer

MARCH 1973

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

Approved for public release;
distribution unlimited.

Project 572M

Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract F19 628 -71-C-0002

FOREWORD

This report has been prepared by The MITRE Corporation under Project
572M of Contract F19(628)-71-C-0002. The contract is sponsored by the
Electronic Systems Division, Air Force Systems Command, L. G. Hanscom
Field, Bedford, Massachusetts.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved.

MELVIN B. EMMONS, Colonel, USAF
Director, Information Systems Division
Deputy for Command & Management Systems

ABSTRACT

Early data management system architecture is examined and compared
with that of current systems. This comparison reveals a trend toward
placing a number of basic data management system components within the
modern operating system. A continuation of this trend is postulated
and a number of specific examples of areas where the trend is likely
to continue are given. The advantages of a continuation of this trend
are described in terms of both the ease of building new data manage-
ment systems and the increased compatibility of such systems with
other data processing tools.

iii

PREFACE

This paper was presented at the USAF Academy Worldwide Data
Management Symposium on Design and Evaluation, held at the Air Force
Academy on 9-11 December 1971.

iv

TABLE OF CONTENTS

INTRODUCTION 1

DMS IN THE PAST 3

CURRENT DATA MANAGEMENT SITUATION 4

CURRENT TREND 7
Will Trend Continue? 7
Should Trend Continue? 7

SOFTWARE CAPABILITIES FOR INCLUSION IN FUTURE
OPERATING SYSTEMS 8

Improved File Structures 8
Symbolic Reference to Data 9
Physical File Structures 10
Logical File Structures 11

Additional Basic DMS Components 12
Concurrent Task Management 12
Management of Concurrent File Access 13
Secure Data Management System Operation 13

EFFECTS OF PLACING BASIC DATA MANAGEMENT SYSTEM COMPONENTS
WITHIN THE OPERATING SYSTEM 14

CONCLUSIONS 15

REFERENCES 16

BIBLIOGRAPHY 17

INTRODUCTION

The views expressed in this paper are derived to a great extent
from the author's involvement in both past and present data management
projects sponsored by the Electronic Systems Division of the Air
Force. These projects span a period of more than ten years during
which there has been considerable change in the field of data manage-
ment. The most significant single change is the growing acceptance
of data management as an essential set of tools for the management
of formatted files. Ten years ago, virtually all significant data
management development work was being done within the Department of
Defense community, largely in response to the demanding requirements
of command and control systems. The management support users of
data processing, both in the military and commercial environments,
regarded data management systems as being inappropriate tools for
their immediate needs. The reasons for this are fairly straight-
forward. First, the demands for high speed data retrieval and multi-
user access were critical needs in the command and control environment
and strongly encouraged the development of such systems. Second,
the cost of such systems was very high. They typically required over
a million dollars to implement, and took a number of years to complete.
This level of investment was out of range with that which the manage-
ment support community could afford. Additional impetus for the
building of these large, high-performance systems was provided through
the availability in the command and control environment of what was
then large sophisticated hardware such as the SAGE computers. Manv
non-command and control users of data processing did show an interest
in data management, however, their available resources limited this
interest to using fairly simple tape file extraction and report
generation programs.

This early situation is in strong contrast with that of the
present. There are over one hundred data management systems being
marketed today largely as proprietary software, and there is a dramatic
increase in the use of these systems by commercial users of data
processing. The Informatics Inc. MARK IV system, for example, has
a client list of over 400, while IBM's IMS system is over 200. Within
the set of DOD systems, NIPS has found wide acceptance in terras of
the number of installations where it is being used.

The most significant conclusion to be drawn from these numbers
is that data management is no longer regarded as the exclusive proper-
ty of command and control, but as a necessary and even vital part of
other segments of the data processing user community. More specifi-
cally, the management support segment which is dominant in both the
military and commercial environments has begun to greatly expand its
interest in and use of sophisticated data management capabilities.

This wide use, more than any other single factor, has begun to
influence not only the range of jobs to which data management is
being applied, but the architecture of the systems themselves. This
is not surprising. In any field, increasing demand for a product or
service has a strong influence on the basic economics of providing
that product or service, and a subsequent change in the methods of
constructing and supplying it. Probably the most obvious example of
this in data processing is the history of operating systems. Early
operating systems were little more than simple utilities which func-
tioned as aids in using the hardware. Today they are a necessity.
Ten years ago it was extremely difficult to imagine a manufacturer
supplying as a standard operating system something as extensive and
complex as the System/360 Operating System. Now the capabilities of
such systems are regarded as commonplace, and users have developed
even higher expectations for the future.

The motivation for the development of these vastly improved
operating systems has rested largely on the growth of the data pro-
cessing industry. This has allowed manufacturers to make major
investments to develop such complex systems and to amortize their
cost over a much wider market and a long period of time.

Data management systems have now begun a transition very similar
to that of operating systems. They are still largely in the category
of a utility, albeit a rather sophisticated one. The volume of
demand for their capabilities, however, is sufficiently high so that
new DMS architectures for meeting this demand efficiently can now
be realistically considered.

The central thesis of this paper is that the most effective way
of supplying data management capabilities in the future is to imbed
a substantial number of the components of a DMS within a modern
operating system. The specific components chosen in this paper are
those which, in addition to being common to every DMS, are sufficiently
alike in current data management systems to warrant use of a single
implementation of that component in future systems. It is argued
that this approach provides the following benefits:

i. Any component of a data management system can be made to
operate more efficiently and effectively when it is included
as part of the operating system.

ii. Many DMS components and the functions they support are not
unique to data management systems but are common to many
other types of processing. Consequently, inclusion of DMS
components within the operating system makes them more widely
available, and promotes compatibility between the data
management system and other non-DMS programs.

iii. Given adequate implementation of these components, the de-
signers of data management systems will be free to concen-
trate on providing better capabilities in support of specific
DMS applications.

A straightforward way of defending these statements is to describe
the problems faced by designers of early data management systems in
terms of the tools available to them, and to compare these problems
to those faced by current designers and implementors of data manage-
ment systems. This comparison reveals a trend toward providing many
facilities which are essential in the implementation of data manage-
ment systems within current operating systems. By extrapolation of
this trend, a probable architecture for future data management systems
can be described. This description substantiates the main thesis of
this paper.

DMS IN THE PAST

The most striking problem facing designers and implementors
of data management systems in the early 1960's was the lack of almost
any basic support software useful for building a data management
system.

The author of this paper was a member of a group which imple-
mented a data management system on the SAGE computer, the AN-FSQ-7,
in 1961. This machine had extremely impressive hardware capabilities
for its time, and provided an excellent vehicle for constructing a
data management system. It had 65k, 32 bit words of 6/is core storage,
high speed drum storage with an access time of under twenty milli-
seconds, a communications drum which allowed for simultaneous use
up to 10 teletypes, graphics display consoles, and high speed
electrostatic printers. This system, however, was devoid of any
general purpose software. There was no operating system or utility
package available, other than a symbolic assembler and loader.

The data management system which was built, called ETF, was an
experimental system and was not intended for operational use, although
it was used as a base for prototype applications in military airlift
operations and in post-attack command and control. The data manage-
ment capabilities which this system provided included a general pur-
pose query language and output formatting routines, file structures
providing rapid retrieval through a hash-code technique and multi-
terminal on-line operation. In many respects, this system was com-
parable in capabilities and performance to some that are being marketed
today. The process of implementing it, however, was considerably
different.

This implementation process can be conveniently divided into
three phases. First was the implementation of very low-level routines
such as input-output handling and core storage allocation. These can
be thought of as "basic operating system components". Today they are
taken completely for granted. Second were file and dictionary access
programs, file storage allocators for management of disk, space, and
routines to manage multiple simultaneous teletype input-output including
management of task queues. These routines can be termed "basic DMS
components". At the time, most of these capabilities were quite new
and were largely untried. Today, they are taken for granted in almost
every DMS, although they are built using a variety of implementation
techniques.

Once the capabilities described above had been provided, the
third phase could begin. This phase concentrated on the implementa-
tion of the query language translator, output formatting routines,
special computational routines and the file generation program.
These programs can be termed "basic language components". This divi-
sion of a DMS into components can be further clarified by thinking
of them in terms of those which are transparent to a user of the DMS
and those which are visible to him. The operating system components
and basic DMS components are transparent to a user of the system,
although they have a strong influence on its performance. The basic
language components constitute the user's interface with the data
management system and strongly influence the suitability of the
system for various applications.

A further observation about the ETF system is that the basic
language components of the system were by comparison easier to con-
struct than were the basic DMS components. This is true because
the presence of an adequate set of basic components allows for sub-
stantial change within the language components of the system even
after their initial implementation. The most important observation,
however, is that virtually the entire system had to be built from
scratch.

CURRENT DATA MANAGEMENT SITUATION

All of the goals which the designers of the ETF system were
trying to achieve are still very valid. Such capabilities as on-line
query languages supported by high-speed retrieval mechanisms are
characteristics which many systems today either contain or aspire to.
The MRI Inc. System 2000, Cambridge Computer Associates CCA10A System
and TRW's GIM System are all contemporary systems which were designed
with these characteristics as major goals. Systems such as IBM's
NIPS and Informatics MARK IV which were fairly simple batch processing

systems in their original implementations have evolved upwards in
complexity to include many of the features of newer higher perfor-
mance systems.

In addition to similar goals, the design techniques used in
current systems are remarkably like those employed in early systems.
This is not to say that there have not been improvements, because
there have, however, such file access methods as hash-coding, inver-
sion of files using bit vector schemes or pointers had all been
implemented at least once by 1962. Current query languages also show
remarkable similarity to those of early systems. For instance, the
language of SDC's DS/2 system bears more than a vague resemblance to
that of the ETF system.

Where have the major advances in data management systems ocurred,
then? There have been no dramatic breakthroughs in the field of
technical design. Improvements have been evolutionary in nature and
have come largely through reimpleraentation and refinement of basic
techniques. The most significant advance in data management systems
is their acceptance by a much broader segment of the data processing
industry than was formerly the case, and the dramatic rise in the
number of available systems. Much of the reason for this availabi-
lity is due to the inclusion of basic tools within the operating
system, similar to the basic DMS components described above, which
makes implementation of data management systems quicker and cheaper.

There are a number of examples of basic DMS components which are
contained in current operating systems. The most important of these
is physical file access methods. It is important because the designer
of any data management system must decide whether to make use of
access methods which have been provided with the operating system or
to design and implement his own. The cost differential between these
alternatives is large, as is the implementation time. Because of
this, many data management systems make use of these access methods.
Within the IBM 360/370 environment, the NIPS system utilizes the
Indexed Sequential Access Method for organizing its data files. This
is also true for the Systems Development Corporation's DS/2 system
which offers the option of using either sequential or indexed sequen-
tial access methods. The INQUIRE data management system built by
Infodata Systems, Inc., for use on IBM 360/370 equipment, uses a
combination of indexed sequential and direct access methods. The
data management system bid by Honeywell Information Systems in its
WWMCCS submission provides an additional example. Originally, this
system was designed to handle tape files compatible with a number of
other systems including COBOL. As a part of its enhancement for the
WWMMCS bid, interfaces between the system and additional access
methods available under GECOS III were built. These include both

the randan file capability as well as the recently announced Honeywell
Indexed Sequential Access Method.

There are numerous other examples of the type cited above, all
of which serve to demonstrate that current data management system
designers frequently make extensive use of manufacturer supplied access
methods.

A second significant area in which operating system capabilities
are used to support data management functions is in teleprocessing.
The use of IBM's teleprocessing access methods by many existing data
management systems is an example of this. While these capabilities
are rather basic, the availability of the Time Sharing Option of OS 360
provides a much more substantial set of such tools and will certainly
be used in future systems. This can be illustrated most clearly with
an example drawn from the author's recent experience.

The Air Force Data Services Center (AF/ACS) established a
project in 1970 to acquire an interim data management system. The
system which was chosen had been built by General Electric Apollo
Systems Department for NASA and was called ADVISOR. The system
had been implemented originally under GEOOS II, which had no time-
sharing subsystem. The system, however, was intended to support
multiple on-line terminals. The implementors were naturally forced
to develop a sub-monitor of their own since GECOS II provided no
support for subsystems with terminal capabilities. The GECOS II
version of ADVISOR, including its sub-monitor, required 34K words of
core storage. Furthermore, it was necessary to alter the job sched-
uling algorithms of the GECOS II operating system to guarantee adequate,
response times to ADVISOR terminals. At the time the ADVISOR system
-as selected for installation at AF/ACS, GECOS III with its time- .
faring subsystem had become available, and it was decided to modify

:aa ADVISOR system :o run under time-sharing.

The modifications to the system resulted in substantial improve-
ment, in two areas. First, the amount of core required by the system
went from 34K words to 23K words, a reduction of almost one-third.
Second, the response time at terminals was significantly better in
the modified version even when the DMS was competing with a number
of other time-sharing users.

It is the author's belief that this experience is representative
of the kinds of savings which could be realized in many data manage-
ment systems by using time-sharing facilities supplied as a part of
the operating system. This does not mean that current time-sharing
systems provide all features needed for support of data management
systems. However, they represent a significant advance over tools
which have been available in the past.

CURRENT TREND

The examples presented above have illustrated the trend towards
including many basic DMS components necessary to data management
within operating systems. Clearly, some of these components would
exist in the absence cf any DMS requirements. However, a large enough
number of them have been provided specifically for data management
related functions so that a precedent has been established. This
raises two additional questions. First, will this trend continue?
And, second, should it continue?

Will Trend Continue?

The answer to the first question rests on two main issues: the
additional needs of data management system designers in terms of
basic DMS components required, and the size of the market perceived
for these by suppliers of operating systems. The usefulness of
additional components for use in constructing data management systems
can be shown by an examination of a number of specific representative
areas in which such components are now being developed. These are
discussed in more detail in the next section. The accurate deter-
mination of the size of future markets for these components is more
difficult. The president of IBM, Mr. Cary, in a recent article1 is
quoted as saying that systems incorporating a data base and data
communications have the most future market potential. A major manu-
facturer of data processing equipment is known to be developing a
large array of tools for data base manipulation which are architec-
turally within the operating system. At a general level, the increase
in the amount of formatted file processing and more specifically the
processing of large shared data bases, is an established fact. The
wide use of systems such as IBM's IMS and the CINCOM's TOTAL system
as a set of basic DMS components for data base management systems
bears this out.

Should Trend Continue?

The second question raised above; namely, the desirability of
a continuation of this trend is largely a subjective question. In
discussing data management system design with collegues, this author
has more than once heard the argument advanced that "operating systems
are making it difficult to implement many of the low-level detailed
functions required by data management". This is undoubtedly true,
and is in fact additional evidence that the trend cited in this
paper is established. These people, to a great extent, are concerned
with the specific problem of having to deal with standard access
methods which do tend, in some instances, to make it difficult to
develop complex new file structures. The alternative to this is to

provide features within the operating system which will allow imple-
mentors to start from scratch at a "bare bones" level and build their
own systems. This is incompatible with the fundamental philosophy of
modern operating systems. Multiprogramming systems, for example,
require that users give up some individual freedoms (e.g., first-
level interrupt handling) in the interests of overall system efficiency.
In the case of file access methods, their use on a wide basis indicates
the existence of a concensus that the availability of a standard set
of them is sufficiently valuable to warrant a compromise in flexibility.
None of these statements is intended to suggest that data management
system designers should be prevented from experimenting with new
techniques. This, in fact, should be encouraged. It does mean, how-
ever, that much of this experimentation may have to be carried out
external to the environment of standard operating systems. In short,
the trend toward the wider availability of basic DMS components pro-
vides useful tools to implementors of operational data management
systems on standard hardware and software and can sometimes be a
hinderance to those designers whose interests lies solely in experi-
mentation with new techniques on these same systems.

To return to the main question at hand, the established trend
toward placing basic DMS components in operating systems should
continue because it shows every indication of further lowering the
implementation cost of data management systems, allowing the imple-
mentors of the DMS to concentrate on basic language components, and
increasing the compatibility among all software elements of any
facility using the standard operating system. The following section
describes a number of specific technical areas on which a continua-
tion of the trend is likely to be based.

SOFTWARE CAPABILITIES FOR INCLUSION IN FUTURE OPERATING SYSTEMS

Each of the topics discussed below is an area in which there is
currently one or more implementation activities underway or which
are being widely and actively studied. These areas can be divided
into two main types: those which were originally motivated by or
developed specifically for data management use, and those which
were or are being developed for general use but are critically
important to future data management systems. In either case, they
represent basic DMS components which belong within an operating
system.

Improved File Structures

The need for increasingly sophisticated file structures is well
established. The inclusion of support for these structures within

the operating system Ls advantageous for two main reasons. First,
it makes such structures available to all processing functions,
including procedure oriented languages. Second, such structures can
be provided through extension of current operating system capabilities.
These extensions are described in detail below.

Before discussing specific file structures, definitions of
logical and physical file structures are appropriate, since there is
often confusion over the distinction between these terms. For the
purposes of this paper, a logical file structure is the set of ex-
pressed or implied relationships between records or entities within
a file or data base. Thus, such terms as "flat files", "hierarchical
files", and "network structured files" all describe logical file
structures. Physical file structures are the mechanisms utilized to
store and retrieve file data. These include such techniques as
sequential access methods, direct access methods, bit vector schemes
for file inversion, and others. It should be noted that there is
usually, but not necessarily, a one to one correspondence between
physical and logical file structures. For example, an indexed
sequential access method might be used to store either flat or hierar-
chical files.

Symbolic Reference to Data

A conceptually simple extension of current operating systems'
file access methods is that of symbolic field-level reference to
data. All current access methods are organized at the lowest level
around the notion of records. In only limited cases (the index of
ISAM is the most obvious example) is the access method sensitive to
units of information at a level lower than that of a record. Both
data management systems and formatted file related applications
programs operate primarily on field level information which in most
cases is represented as contiguous strings of characters within a
record. Furthermore, most non-DMS applications programs are bound to
specific record formats in the sense that any change in either field
level information or the physical file structure causes the program
to run incorrectly. In the past, this situation was undesirable but
could be tolerated, since many application programs were the sole
users of a data file. In a shared data environment, this method
of binding programs to specific formats is highly undesirable. Data
formats are changed quite frequently, forcing application programs
m change with them. What is needed is an ability to maintain a
single description of a record's contents rather than allowing each
applications programmer to maintain a separate and unique data declara-
tion. This situation has been available in COBOL by using external
dats divisions, however, it is rarely taken advantage of.

A more desirable mechanism for both data management systems and
non-DMS applications programs is a physical data description or data
declaration managed by the operating system as a natural extension
of current access methods. This is very similar in concept to the
dictionary of current data management systems, and its inclusion as
a part of file manipulation routines makes its advantages more widely
available. An applications programmer or data management system
making use of this capability would invoke the name or identifier
of the record type it desired access to, and after reading any record
of this type, the fields of that record could be referenced symbolic-
ally. The most obvious way of providing this capability in the future
is to extend, to the field level, the file cataloging and file directory
services provided by current third-generation operating systems.

Physical File Structures

The key to the performance of any data management system is the
physical file structure it employs. Because of this, designers of
data management systems have devoted more time and thought to the
relationship between logical and physical file structures than any
other single component in a DMS. There are a number of generally
accepted maxims which have evolved from the observation of many
implementations of different types of file structures. The most
important by far is that there is no single access technique or
physical file structure which provides optimum performance over a
wide range of common file processing applications. For example,
demands for very high speed retrieval from large files are incom-
patible with those of large volume, rapid updating, and high volume
output requests. To a great extent, this is a reflection of the
limitations of current secondary storage devices, and it points out
the needs for a diversity of access methods from which the most suit-
able one for any application can be selected.

Because no single physical access method stands out as being
universally better than all others, it is difficult to propose a
specific one, or even a small set for inclusion in future operating
systems. It is clear, however, that demand for increasingly complex
physical structures is increasing, indexed sequential and direct
access being the best examples, and is likely to continue. Perhaps
the most obvious next steps in complexity are those of multiple indexes
for a single file (file inversion) and the provision of physical
structures which support logical structures of increased complexity.

File inversion techniques, and there are many of them, are the
most frequently used mechanism for providing high-speed retrieval
within the limitations of currently available nardware. For appli-
cations requiring this type of performance, a rapid method of selecting
records based oa their content is necessary. To either a data

10

management system designer or to an applications programmer, the
capability would take the general form of a call to the operating
system which delivers to the user the "next" record or records whose
contents meet the criteria specified in the call. The specific
physical access methods used within the operating system to achieve
this should be largely transparent to the program making the call.
Furthermore, it should be mentioned that the usefulness of such a
capability is made possible by the availability of the file diction-
ary described previously, since any qualifying field can be referenced
symbolically.

Logical File Structures

In addition to improved physical access methods, an ability to
manipulate file structures of greater logical complexity is needed.
This need is currently being met by such systems as IMS and TOTAL,
which support hierarchical and network structured files. An example
of the need for these structures can be found in the Military Airlift
Command's MACIMS system. One of the primary goals of this system
is the management of a large body of interrelated data. This includes
a reduction in the redundancy of data storage, and the ability to
provide data to a number of different functional processors, each
requiring a different but, not necessarily unique, subset of the
data. Comparison of these requirements with the abilities of tradi-
tional file structures such as that supported by COBOL reveals a
significant gap between requirements and capabilities, and thus a need
for structures such as those provided by IMS.

The implementation of support for such structures within an
operating system is reasonably straightforward technically, and can
be constructed using the dictionary and some of the physical access
capabilities proposed earlier. The most difficult problem currently
being faced is that of arriving at a consensus as to which set of
logical and physical structures are best. It seems likely that much
of the discussion is due to a lack of sufficient data on the relative
merits of one structure versus another, and that any firm decision
cannot be made until such data is generated.

Regardless of what structures are chosen, the effects on the
operating system and the types of support it must provide are much
the same. At a detailed level, the capability needed is that of
retrieving a record from a file based on a logical relationship of
of that record to another in the file. Thus, a simple example is one
of moving downward in a hierarchical tree to retrieve the offspring
records of a parent record. Again an important point about placing
these capabilities within the operating system is that they become
available not only to data management system designers and implementors

11

as a set of capabilities which form a base on which a data manage-
ment system can be constructed, but also to the application programmer
as a basic extension of his programming language.

Additional Basic DMS Components

The discussion above on file structures is largely centered
on techniques which have been developed within the domain of data
management, but which today find much broader applicability. The
additional areas discussed below originated in a wider context than
DMS but are critical to their operation and which most sensibly (from
a technical and economic point of view) belong in the domain of the
modern operating system.

Concurrent Task Management

Many data management systems are designed with at least some
thought of providing service to multiple simultaneous on-line users.
As the examples in the earlier portions of this paper have shown, one
promising vehicle for providing this capability is the time-sharing
subsystem of many modern operating systems.

•
Unfortunately, current time-sharing systems are not entirely

adequate for supporting all of the concurrent task management needs
of a data management system. In particular, most time-sharing systems
have been developed to support independent, unrelated jobs. This is
incompatible with many needs of current data management systems. A
prime example is the area of related job scheduling. In many data
management applications, it is desirable to be able to assign priority
to different types of users or the jobs which they are performing.
This need is usually met by providing a method of queueing a set of
jobs all operating on a single file, and interrupting tasks which
are in execution to service, on arrival, higher priority tasks.
Current time-sharing systems must be improved substantially in this
area to meet the needs of data management systems. An additional
improvement to time-sharing systems which would benefit not only data
management systems but all users of time-sharing is that of reentrant
program support. In a data management system environment, there is
a high probability that more than one user is executing the same
module of the data management system. For example, in a system witn
ten simultaneous on-line users, it is very likely that more than
one of them is making use of the query language translator. This
is a situation where reentrant programs can provide a significant
saving in core space required. In the operation of some current dam
management systems on IBM 360 equipment, it is always distressing to
be forced to maintain a separate copy of the data management system
in core for each system user. The effective use of reentrant programs
running in a time-sharing environment can eliminate much of this pronlem.

12

Current time-sharing systems, then, must be improved to allow
data management systems to operate at a high level of efficiency, and
with a full set of capabilities. Nevertheless, the use of current
time-sharing systems offers considerable advantage over the alter-
native of building similar capabilities nearly from scratch.

Management of Concurrent File Access

The problem of managing concurrent file access, including both
reading and writing of files, has no general solution. This is a
problem which is of interest to not only data management systems, but
any set of programs referencing a common set of data files. There
are a number of examples which can be used to illustrate the problem,
probably the simplest of which is the case where program A is updating
a file, and program B is reading it. Both programs are operating in
a multiprogramming environment where either may be interrupted by
the operating system without notice. Program A, then, may be stopped
in the midst of an update which changes not only a data value, but
the structural integrity of the file. Program B, in trying to read
the file, may find a logically inconsistent data structure which it
cannot sensibly process.

The general solution to this problem at the level of small units
of file access, such as records, is not known. However, it is clear
that any solution will be an integral part of the operating system.
It must be tightly bound to the file access mechanisms of the system
in order to maintain an awareness of all accesses to a given file.
One can imagine a central, perhaps reentrant, routine which main-
tains control tables for all file access by any program or system.
It is in a position to detect conflicts , and schedule file accesses
in such a way that the conflict is eliminated. The need for such a
solution becomes more critical as shared data applications come into
wider use. Current solutions to the problem such as preventing all
file access from being made while an update process runs to completion
simply are not satisfactory.

Secure Data Management System Operation

A problem which is of obvious special interest to the DOD com-
munity is that of providing secure operation in a multi-access computing
facility. This problem is a general one, and affects not only data
management systems, but all programs running in a facility handling
classified information. The problem is of particular interest to
designers,implementors, and users of data management systems, since
the central objective of a secure facility is protection of file data
from unauthorized or accidental disclosure. Like all other functions
discussed in this section, a majority of the mechanisms for providing

13

secure operation must be within the operating system. The reason
for this is straightforward. Assume the existence of a data manage-
ment system with an arbitrary number of security controls built into
it. Also assume that this system runs under the control of an
operating system which has not been designed to be secure. In such
a situation, it is a simple matter for any person with a system
programmer's knowledge to access data belonging to the data manage-
ment system through independent means. Consequently, a secure data
management system is one which maintains its own security controls ,
but depends primarily on its operating system for secure operation.

EFFECTS OF PLACING BASIC DATA MANAGEMENT SYSTEM COMPONENTS WITHIN
THE OPERATING SYSTEM

The value to data management system designers and implementors
of the capabilities discussed above can be shown by considering again
tae process of constructing the capabilities provided in the early
ETF system, and comparing this with the original example. The most
dramatic change is the virtual absence of both the first and second
piiases of the original implementation. The first phase is made un-
necessary because all of the functions originally implemented in it are
available today in modern operating systems. The second phase has
been largely eliminated because the basic DMS components would be
available within the operating system. This phase now becomes largely
a process of selecting from available components, those most appropriate
to the characteristics of the system being constructed. In the case
of ETF, the first step would be the selection of a prime access method.
Any key value or index method providing rapid access to individual
records by name would likely duplicate (or better) the performance of
the original system. The logical structure required would be a two-
Jcvel hierarchical file, which compared to some structures supported
even today, such as in IMS, is nearly trivial, and would certainly
be available within the standard structures supported in the future.
Having chosen one (or possibly more than one) access method and
determined that tiie file structures desired were supported, design
could begin on the query language translator, output formatting rou-
tines, retrieval processors, and file generation routines. The
development of these programs could be done using tiie s.ime time-
sharing system that would ultimately support the data management
routines as one of its subsystems. This is particularly advantageous
since time-sharing is an excellent tool for program development and
can reduce tiie elapsed time involved by 50 per cent or more.2,3

After completing these functions and installing those that inter-
faced with on-line users under the time-sharing system, the new RTF
system would be complete. In the author's opinion, this procedure
would provide a savings in time and manpower of roughly one-half over
that of the original system.

14

In addition to the savings in implementation costs, the system
o\ the previous example and for that matter any data management system
built from the same basic capabilities would have a number of signi-
ficant additional advantages over current and previous systems. First
is the relationship between the data management system and standard
programming languages. Since both the DMS and standard compilers
would use the dictionary capability described earlier, data files
operated on by the data management system could also be directly
accessed from any programming language within the system. In the
past, this sort of compatibility at the data level has often been
desirable but largely unavailable. No problem-oriented language
such as those provided in many present data management systems is
capable of supporting very complex processing. Occasionally, this
type of processing is necessary. However, in any data management
system with a unique file structure, processing of its data with
external procedure oriented language programs becomes nearly impossible.
The common use of the data dictionary eliminates much of this problem.

The second advantage of data management systems built with basic
capabilities within the operating system, is that of better overall
stability. Any capability included as part of a standard operating
system receives better maintenance, is better documented, and has
better training associated with it than it would as a user generated
collection of software. This is largely due to economy of scale;
widely used software generates increased revenues, however, main-
tenance and documentation costs are largely independent of the number
of users of the software.

CONCLUSIONS

Data management today is experiencing more rapid acceptance of
its capabilities than has ever been the case in the past. The exper-
ience gained within the DOD community over the past ten years in DMS
has been responsible to a great extent for this situation. This
acceptance provides the possibility of altering the basic architec-
ture of data management systems so that many of its components can
be included within the operating system, thereby providing better
support and wider availability for them. The inclusion of many
basic DMS capabilities in the operating system can only be done
successfully, however, by selecting broadly useful techniques which
have been proven out in a number of implementations in the past.

The overall goal of the DMS community should be to make data
management a naturally available tool within any data processing
facility rather than a separate, special purpose collection of soft-
ware as it has so often been in the past. Its potential value to a
broad range of data processing problems is now established and accepted
The realization of this value is the most important problem facing

data management.

15

REFERENCES

1. A. Pantages, R. B. Frost, "IBM: Changes at the Top" Datamation
Vol. 17, No. 21, November 1, 1971, pp. 26-28.

2. M. Schatzoff, R. Tsao, R. Wiig, "An Experimental Comparison of
Time-Sharing and Batch Processing", Communications of the ACM,
May 1967.

3. H. Sackraan, W. J. Erikson, E. E. Grant, "Exploratory Experimental
Studies Comparing Online and Offline Programming Performance",

Communications of the ACM, January 1968.

16

BIBLIOGRAPHY

System Development Corporation, PS/2 Users Manual, Santa Monica,
California, 1970.

Computer Corporation of America, Technical Reference Manual, Series
100, Information Retrieval Software Systems, Models: 102, 104,
Cambridge, Massachusetts, October 1, 1970.

TRW Systems Group, GIM System Summary, TRW Document No. 3181-A,
Revision 01, Redondo Beach, California, 15 August 1969.

IBM federal Systems Division, System/360 Formatted File System (NIPS) ,
Vol. I-VIII, 30 September 1969.

National Aeronautics and Space Administration, MA001-013-1, ADVISOR
MSF-DPS Familiarization Manual, Washington, D. C., January 1970.

IBM Corporation, GH20-0765-1, Information Management System/360,
Version 2 General Information Manual, 1971.

Cincom Systems, Incorporated, TOTAL - the Data Base Management System,
Reference Manual, Edition II, Version I, 1971.

Informatics Inc., Document No. SP-70-810-200, MARK IV File Management
System, 1970.

MRI Systems Corpration, Document No. RM S2K 2.1, System 2000
Reference Manual, 15 July 1971.

Infodata Systems Inc., Inquire Technical Summary, April 1970.

IBM Corporation, Document No. GC26-3746-0, IBM System/360 Operating
System Data Management Services, January 1971.

CODASYL Systems Committee, Feature Analysis of Generalized Data Base
Management Systems, Association for Computing Machinery, New York,
New York, April 1971.

CODASYL, Data Base Task Group Report to the CODASYL Programming
Language Committee, Association for Computing Machinery, New York,
New York, April 1971-

17

Security Classification

DOCUMENT CONTROL DATA .R&D
(Security ctaetltlcatlon of till: body of abstract and indexing annotation mutt be entered when the ovmrmll report Is clatatllad)

I. ORIGINATING ACTIVITY (Corporate author)

The MITRE Corporation
P. O. Box 208
Bedford, Mass.

2a. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
26. GROUP

S. REPORT TITLE

CURRENT TRENDS IN DATA MANAGEMENT SYSTEM ARCHITECTURE

4. DESCRIPTIVE NOTES (Type of report and Inclusive dates)

5. AUTHORIS) (First name, middle Initial, last name)

J.A. Singer

e. REPORT DATE

MARCH 1973
7». TOTAL NO. OF PAGES

22
7b. NO. OF REFS

3
la. CONTRACT OR GRANT NO.

F19(628)-71-C-0002
6. PROJECT NO.

572M

9a. ORIGINATOR'S REPORT NUMBER(S)

ESD-TR-72-157

9b. OTHER REPORT NO(S) (Any other number* that may be mealgned
this report)

MTR-2303

10. DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited

II. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Deputy for Command and Management Systems
Electronic Systems Division, AFSC
L.G. Hanscom Field, Bedford, Mass.

13. ABSTRACT

Early data management system architecture is examined and compared with that of current
systems. This comparison reveals a trend toward placing a number of basic data management
system components within the modern operating system. A continuation of this trend is
postulated and a number of specific examples of areas where the trend is likely to continue
are given. The advantages of a continuation of this trend are described in terms of both the
ease of building new data management systems and the increased compatibility of such
systems with other data processing tools.

DD FORM .1473
Security Classification

Security Classification

KEY WORDS
DOL E »T

DATA MANAGEMENT CAPABILITIES

DATA MANAGEMENT SYSTEMS

ETF SYSTEM

OPERATING SYSTEMS

Security Classification

